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Abstract 

In this paper we consider gradient structures in the dynamics and geometry of the asymmetric 
nonperiodic tridiagonal and full Toda flow equations. We compare and contrast a number of formu- 
lations of the nonperiodic Toda equations. In the case of the full Kostant (asymmetric) Toda flow 
we explain the role of noncommutative integrability in its qualitative behavior. We describe the 
relationship between the asymmetric Toda flows and the symmetric and indefinite Toda flows, and 
prove in particular that one may conjugate from the full Kostant Toda flows to the full symmetric 
Toda flows via a Poisson map. 0 1998 Elsevier Science B.V. 
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1. Introduction 

The dynamics and geometry of the classical nonperiodic Toda lattice equations have 
generated a tremendous amount of research over the last couple of decades. This includes 
the original work of Toda [35] on the Toda lattice, the work of Flaschka [19] (see also 
[23]) who showed how to write the lattice flow in tridiagonal Lax pair form, and the work 
of Moser [29] who analyzed the finite nonperiodic Toda lattice and its spectral properties. 
Kostant [27] (see also [7]) generalized these results to Toda lattices associated with arbitrary 
semisimple Lie algebras. 
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Moser showed that the nonperiodic Toda lattice equations are gradient on a level set of its 
integrals. Bloch [3] and Bloch et al. [5] showed that this gradient flow behavior is exhibited 
in the original Flaschka variables as a gradient flow with respect to the normal metric on an 
adjoint orbit of a compact Lie group. This flow takes the so-called double bracket form. It 
was also shown (see [3,6]) that the original gradient flow of Moser can be written in double 
bracket form as a gradient flow on a projective space. A key part of our paper here involves 
showing how this gradient behavior extends to more general forms of the Toda flows (see 
also the work of de Mari and Pedroni [ 161 discussed below). 

An important aspect of Kostant’s work was that he wrote the Toda lattice in asymmetric 
tridiagonal form. This turns out to be more general than the symmetric form used in much 
of the literature. In the current paper we show how the Kostant Toda lattice equations may 
be viewed as a gradient flow, and we discuss the relationship of this flow to double bracket 
flows on noncompact manifolds. The latter flows are a special case of the Kostant Toda flow 
and are related to the work of Faybusovich [ 181 and Kodama and Ye [24,25] on Toda flows 
with indefinite metric (see also [lo]). We shall call flows of this type “signed” Toda flows 
since they are defined by prescribing a signature matrix. 

We also consider here the full Toda lattice, i.e. the Toda flows on generic orbits of the 
coadjoint action of the Bore1 subgroup. The key original paper in this area is that of Deift 
et al. [ 131 (see also [34]), and this was followed by the work of Ercolani et al. [ 171 among 
others. While it is simple to conjugate from the tridiagonal asymmetric to the symmetric 
Toda lattice, this is much trickier in the full case, but we indicate a method for doing this. 
A recent paper on the full symmetric Toda lattice is that of de Mari and Pedroni [ 161, 
which discusses the gradient nature of these flows. Here we consider their analysis and its 
relationship with the Hamiltonian structure and level sets of the flow. We also consider the 
gradient nature of the nonsymmetric Kostant full Toda flow. Again, while this is apparent 
from its asymptotic behavior, understanding its geometry is more subtle than the symmetric 
case. We show that the gradient-like behavior is in fact essentially due to the noncommutative 
integrability (see [30]) of the full Toda flow. We give a sketch of the proof of noncommutative 
integrability here, but refer the reader to a related forthcoming paper [22], for further details. 
We also discuss briefly the “full QR” flows described in [14], where the flow is on the space 
of arbitrary rz x n matrices - commutative integrability also holds in this setting. 

The contents of the paper are as follows. In Section 2 we review the necessary back- 
ground and exhibit the gradient nature of the generalized Kostant and signed Toda lattices 
and full Kostant Toda flows. In Section 3 we discuss the full Toda flows, showing how 
to conjugate the Kostant asymmetric flow to signed flows, proving this map is Poisson, 
and establishing the link with noncommutative integrability. In Section 4 we make some 
concluding remarks. 

2. The gradient nature of generalized Toda flows 

We begin by describing a very general (Hamiltonian) formulation of the Toda flows. We 
shall then consider various special cases and discuss their gradient nature. 
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Let g be a complex semisimple Lie algebra with Cartan subalgebra IJ = a @ ia. Let @ 
denote the system of roots of g defined by b and let A denote the simple roots. Choose 
{&,e, 1 j = I,..., I, a! E @} to be a Chevalley basis of g with ~1, . . . , a, denoting the 
simple roots. Here hj lie in the real part a of 0. 

Let gn be the normal real form of g and denote by b+ its upper Bore1 subalgebra. Different 
types of Toda flows to be considered below are associated with different realizations of the 
dual space b* as an affine subspace of g,, via the decomposition of g,, into the direct sum of 
subalgebras 

gn = 40 + b+. (2.1) 

Let go1 be the annihilator of go with respect to the Killing form ( , ). According to the 
Adler-Kostant-Symes formalism (see e.g. [32,33]), one identifies bT, with E + gk, where 
E is a fixed element of hi n [go, gull. 

The generalized Toda flow on E + go1 is generated by the Hamiltonian H(L) = i (L, 15) 
in the Poisson structure obtained as a pull-back of the Lie-Poisson bracket on II:: 

(2.2) 

where gradients are defined with respect to the Killing form and rr+ is a projection on II+ 
parallel to go. The corresponding equations of motion have the Lax form 

t = [L, n+(L)1 = b,,(~>, Ll. (2.3) 

Here ns,, = Id - n+. More generally, the higher Toda flow generated by the Hamiltonian 
H(L), where H is an invariant function on g, has the form 

t = [L, n+(VH(L))]. (2.4) 

As is well-known (see e.g. [20,33]), Eq. (2.4) can be integrated by means of the factor- 
ization method. Furthermore, let f be a restriction to E + gu of an Ads+-invariant function 
on g, where B+ is the upper Bore1 subgroup. Then f is an integral of motion of the Toda 
flow and the Poisson bracket of any two such integrals fl , f2 is given by 

(2.5) 

In particular, if J is a Chevalley invariant of g, then {J, f}t+b_ = 0 for any AdB, -invariant 
function f. 

The above discussion provides a uniform description of Hamiltonian properties of the 
Toda flows associated with any decomposition (2.1). In contrast, when Bloch et al. [4,5] 
showed that the generalized tridiagonal Toda lattice associated with a compact semisimple 
Lie group describes a gradient flow on level sets of integrals, the result seemed to be a 
special feature of the symmetric tridiagonal case. In their recent paper, de Mari and Pedroni 
[16] used a modified Killing form to construct a positive definite metric, with respect to 
which the full generalized symmetric Toda flow is gradient. What we are about to show is 
that the gradient structure in Toda flows is even more general and can be observed in the 
nonsymmetric case too. 
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We recall firstly the corresponding result for the symmetric Toda flow. As we shall see, 
dealing with the asymmetric case requires a rather different approach. 

Recall the definition of the normal metric on an orbit of a Lie group (see [2,6]): 
Let K( , ) = - ( , ) be the Killing form and decompose g orthogonally relative to ( , ) 

into g = gL @ gL, where go is the centralizer of L and gL = ImadL. For X E g denote 
by XL the projection of X onto gL. Then, give n two tangent vectors to the orbit [L, X] and 
[L, Y], the normal metric is defined by ([L, X], [L, Y])N = (XL, YL). Note that for an 
arbitrary semisimple Lie algebra this metric will be indefinite. For an orbit in a compact 
Lie algebra it will be definite. 

It was shown in [4,5] that the following holds: Let gU denote the compact form of a 
complex semisimple Lie algebra. 

Then we have the following result. 

Proposition 2.1. The gradient vectorfield of thefunction H(L) = K (L, N) on the adjoint 
orbit 0 of gU containing the initial condition L(0) = Lo with respect to the normal metric 
(, ) N on 0 is given by 

i(t) = [L(t), [L(t), WI. (2.6) 

Now let 8 be a maximal abelian subalgebra of g,, and choose 6 = VI $ i% as the Cartan 
subalgebra of the complexification g of gU . Choose a Chevalley basis as described above, 
with oj denoting the simple roots as before. 

Bloch et al. [4,5] proved the following result for the symmetric tridiagonal generalized 
Toda flow (see [3] for the sl(n) case): 

Theorem 2.2. Zf N is i times the simple coweights of g, then for 

I I 

L=Cibjhj +Ciaj(e,, +e_,,.), 
j j 

(2.7) 

Eq. (2.6) gives the generalized (tridiagonal, symmetric) Toda lattice equations on the level 
set of all integrals of the Toa’ajiow. Explicitly, N is given by 

N = Cixjhj, (2.8) 

where(xl,..., xl) is the unique solution of the system 

Cxjai(hj) = -1, i = 1, . . . . 1. (2.9) 

In the case of the symmetric full Toda flow, Proposition 2.1 and Theorem 2.2 generalize, 
as shown by de Mari and Pedroni [16] (see also [9,38] for metrics of this type) to the 
following: 
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Proposition 2.3. Let L be given by 

L = 2 ibjhj + C iaj(Xh + X-h), 
j he@ 

(2.10) 

where XL is a root vector with weight h and let N be de$ned as before. Let J be the symmetric 
positive definite operator that assigns to an element of gu zero if it lies in the Cartan 
subalgebra corresponding to the given Chevalley basis and multiplies it by the inverse of 
its weight otherwise. Then the gradient vector field of the function H(L) = K(L, N) on 
the adjoint orbit 0 of gu containing the initial condition L(0) = LO with respect to the 
modzjied normal metric (., J.)N, on 0 is given by 

i(t) = [L(t), J[W), Nil 

and gives the full symmetric Toda flow. 

(2.11) 

The idea of the proof is simply that J “cancels out” the weight assigned by commuting 
with N. 

2. I. The signed Toda lattice 

Faybusovich [18] and Kodama and Ye [24] considered the signed Todaflows in the form 

iJ = [LJ,n,(LJ)], (2.12) 

where L is a tridiagonal or full symmetric matrix and 

J = diag(q, . . . , E,), ci = fl, (2.13) 

is a signature matrix. 
Denote 

su(J) = {X E sl(n, C): JX = -X*J}, (2.14) 

so(J) = {X E sl(n, R): JX = -X’J}, (2.15) 

S(J) = {X E sl(n, R): JX = X* J}. (2.16) 

It can be easily checked that for L symmetric, L J E S(J) and i(L J - Tr(L J)Zd) E su( J). 
This suggests the following extension of the definition of the signed Toda flow to an 

arbitrary semisimple Lie algebra g. Let gs be a real form of g that corresponds to the positive 
eigenspace of an antilinear involutive automorphism t. Assume that gs is compatible with 
the normal real form gn. Then (see, e.g. [3 1, Chapter 51) 

gn = (gn) n (St) + (an) n (is,). 

We assume additionally, that there exists a direct sum decomposition 

4n = kbd f-l (&> + h (2.17) 

where b is the upper Bore1 subalgebra in gn . 
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Then, we have a decomposition (2.1) with go = (gn) 17 (g5). One can choose E = 0 and 
consider the corresponding Toda flow (2.3) on go1 = (gn) n (igr). 

In particular, if we choose t to be the unique antilinear involutive automorphism such 
that 

t(e,,> = i4e--(yj, r(e-q) = Pi&j t t(hj) = -hi, (2.18) 

where pi = f 1, then the flow (2.3) can be restricted to the subspace of “tridiagonal” 
elements in (gn) fl (is,) having the form 

L = kbjhj + etZj(t?aj - /_Lje_aj). 

j j 

(2.19) 

The projection rrr (L) is then determined to be 

nQO(L) = -CYi(fbj + /LjLje-aj), (2.20) 

We call the corresponding Lax equation (2.3) the generalized signed Toda lattice. Note 
that if g is sl(n) and t is defined by (2.18) with pi = -~i~i+t, then Eq. (2.3) takes the form 
(2.12). 

A direct computation shows that 

r,,(L) = -i [L, Nl, 

where N is defined by (2.8) and (2.9). Furthermore, it follows from (2.18) and (2.19) that 
iL belongs to gr . Therefore, the generalized signed Toda lattice can be written in the double 
bracket form (2.6). Moreover, one can modify the argument from Bloch et al. [4,5] in order 
to prove the following analog of Proposition 2.1 and Theorem 2.2. 

Theorem 2.4. The generalized signed Toda lattice describes the gradientflow of thefunc- 
tion H (iL) = K (iL, N) on the adjoint orbit 0 of gs containing the initial condition iL (0) = 
iLo with respect to the (indejnite) normal metric ( , )N on 0. 

2.2. The generalized Kostant Toda lattice 

Following Kostant [27], we now choose in (2.1) go to be equal to n, the nilradical of the 
lower Bore1 subalgebra, and 

E= Ceaj. 

j=l 
(2.21) 

In the case g = sl(n>, the affine space E + go1 coincides with the set of lower Hessenberg 
matrices, i.e. matrices of the form L = bT + E, where b is upper triangular and 6jk = 6j,k_l. 
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The corresponding equation (2.3) is called the&l1 Kostant Todajow and its restriction 
to the symplectic leaf containing elements of the form 

L=kbjhj+ke, +kaje-u,, 
j=l j=l j=l 

(2.22) 

whereaj#O,j=l,. . . , 1, is called the generalized Kostant Toda lattice. 
Our key result here is that the Kostant Toda lattice equations are gradient on J4, an 

isospectral orbit of Jacobi elements through a generic element of the form (2.22). 
Let n* be the nilradical of the upper Bore1 subalgebra and let 7t,,, rr,,* be the projections 

of g onto n and n* in the decomposition g = n + lj + n*. Consider independent invariant 
polynomials HI, . . . , Hl on g. 

Lemma 2.5. 

TLgA = span{[L, nnVHk(L)l, k = 1,. . . , I). (2.23) 

Proo$ This follows from complete integrability. This is a set of commuting flows which 
span the tangent space to 34 at each point. 0 

We have: 

Lemma 2.6. For any two tangent vectors [L , n,, V H,,, (L)] and [L , n,, V H, (L)], the normal 
metric on JA is given by 

([L, nnVHm(L)l, IL, ~,VH,(L)I)N = hVHm(L), wVHm(L)). (2.24) 

Pro05 We have to show that the form on TL~A defined above is symmetric. Let (T be 
the antiautomorphism of g such that a(eUj) = e_,, , a(hj) = hj. Since L has the form 

(2.22), it is possible to find h E Ij such that L = exp(adh)L is stable with respect to cr. 
Note, however, that L does not necessarily belong to gn. the normal real form of g. Then 
c(VH,(L)) = VH,(L) , n,VH,(L) = n,exp(adh)VH,(L) = exp(adh)n,VHm(L) 
and n,*VHm(L) = exp(adh)n,*VH,(L) = a(n,VH,(L)). Therefore, 

(n,VHm(Lh n,*VHn(L)) 
= (n,VH,(L), n,*VH,(I;)) 

= (n,VH,(L), a@,VH,(L))) 

= (cr(nnVHm(L)), GHn(L)) 

= (n,VH,(L), n,*VH,(L)). 0 

It should be noticed that the form (2.24) is, generally speaking, indefinite. It is definite, 
however, if L E gn or, in other words, if aj in (2.3) are all positive. 

We can now prove the following: 
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Theorem 2.7. The Kostant Toda ZatticeJEow XH is a gradientflow on 3~ with respect to 
the normal metric and the function F = (L, N). 

Proo$ For an arbitrary tangent vector 6 L to JA, we need to show dF .6 L = ( XH ,6 L) N . 

By Lemma 2.6, it is sufficient to consider 6L = [L, n,VH,(i)] for some m. 
Now 

dH .6L = (N, [L, n,VH,(L)]) = -([L, N], rr,VH,,&)). 

On the other hand, 

(XH, aL)N = ([L, L-1, [L, %IV%I(L)I)N = (L+, &IV&(L)). 

But [L, N] = L+ - L_ and hence 

(IL, Nl, n,V&(L)) = -(L+, GV&(L)). 

This gives the result. 0 

We remark that this gives the Kostant Toda lattice flow as a gradient flow on a level set 
of its integrals with respect to the normal metric on a coadjoint orbit of the lower Bore1 
algebra. In contrast, the result of Bloch et al. [5] described above shows that the symmetric 
Toda lattice flow is gradient on a level set of its integrals with respect to the normal metric 
on the compact Lie algebra in which it is naturally embedded. 

2.3. The full Kostant TodafIows 

To conclude this section, we establish the gradient nature of the higher full Kostant 
Toda flows (2.4) on 8. Consider a manifold 0: = {Ad,A: Ad,A E b* + E]. It is known 
[27] that TLC?: = {[L, u]: u E n). In particular, the higher Kostant Toda flows of the 
form 

t = [L, n,VH(L)], (2.25) 

where H(L) is an invariant function on g, are tangent to 0:. 
We want to find a metric B( , ) (possibly indefinite) on 0; such that the flows (2.25) are 

gradient with respect to B( , ). 
Let us fix a linear functional 4 on h and look for a metric defined on TL 0; by 

NL, Vll, [L, v21) = eq[BL~lt u21), (2.26) 

where BL is a linear operator from n to n*. We need the following: 

Lemma 2.8. For invariantfunctions HI, Hz, 

ti(q[n,VHl(L), n,*VH2(L)l) = ~(~qbnVHz(L), wVfh(L)l). (2.27) 
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Proqf Due to the invariance of HI, HZ, we have 

0 = ~[VHIW), Vff2@)1 

= m,(b,,Vf4 CL)> 7wVH2(L)l 

+ [nn*vH~(L), ~G,VH~(L)I). 0 (2.28) 

Lemma 2.8 shows that if we define BL on the subspace V c n spanned by {n,,VH(L): H 
is invariant] by 

BL~,VH(L) = n,*VH(L), (2.29) 

then Eq. (2.26) defines a symmetric form on the subspace [L, V] c TLO>. 
Now consider an arbitrary extension of Bl from V to n, such that the form (2.26) is 

symmetric and let VB be the gradient with respect to B( , ). Note that if B( , ) is positive 
definite on V, then the extension can be made positive definite too. 

Lemma 2.9. Eq. (2.25) describes a gradientflow i = VB FH of thefunction 

FH(L) =@&VH(L)). (2.30) 

Proo$ For any 6L = [L, u] E T~01;, 

~FH@) = Mq[VH(L), ~1) = 4+qbwVH(L), ~1) 

= @(nh[B~nrtVH(L), ~1) = NL, T,VH(L)I, [L, ~1). 0 (2.3 1) 

3. The geometry of the full Kostant and symmetric Toda lattices 

3.1. Poisson maps 

In this section we will be mainly concerned with the relationship between the full Kostant 
and full symmetric (signed) Toda flows in sl(n). Our main goal here is to construct a Poisson 
map from an open subset of E + b_ to S(J) that preserves the Toda flows, thus answering 
the question posed in [17]. Note that the obvious linear Poisson map coming from the 
identification E + b_ = S(J) = 6: does not have the requisite property. 

Let L E E + b_ have distinct eigenvalues kr, . . . , h,, then L = Ad CA, where A = 
diag(ht , . _ . , An) and C can be chosen to be in the form C = n v(A) with n lower triangular 
unipotent. Here u(A) is the Vandermonde matrix corresponding to hl , . . . , A,,. 

Assume now that ht , . . . , h, are real. Let us fix a signature matrix J and a diagonal 
matrix T (T is independent of L). We define an element ,!I = /3(L) of the group of upper 
triangular matrices by 

/I* J B = C-‘*TJC-‘, 

provided the factorization (3.1) is possible. Denote 

L==(L)=Ad,gL. 

(3.1) 

(3.2) 
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Theorem 3.1. The image under C$ of the higher Toda flow (2.4) 

i = [(Lk)_, L] (3.3) 

on lower Hessenberg matrices is the higher Todajow L = [nJ(Lk), L] on S(J) = {X E 
sl(n): JX = X* J}, where n J is the projection onto so(J) along the Bore1 subalgebra so(J) 
of J-orthogonal matrices. 

Proo$ From (3.1), 

JC = JAdgcA = Ad- &q*Ad&J = Ad-$*L* = C*J, (3.4) 

therefore C E S(J). 
NOW assume that L evolves according to the equation L = [u, Ll, where v is strictly 

lower triangular or, equivalently, c = UC. Then 

C = [Adbu +&I-‘, C]. (3.5) 

E@ (3.1) implies that J(Adbu + ~/l-t> + (AdBu + BP-‘)*J = P-‘*(C-‘*TJC-‘V + 
v*C-~*TJC-’ + (C-l*TJC-l)‘)p-l = 0, i.e. Adgu + bfi-’ E so(J). 

Since Ck = AdgLk, we have for u = (Lk)-, 

A+ + ,&-’ = ,Ck - (AdS(Lk)+ - #j/Y-‘) = n.&). 0 (3.6) 

If J = Id and T is an arbitrary diagonal matrix with positive coefficients, then B in (3.1) 
is always well-defined. Moreover, in this case the image under 4 of the flow (3.3) will be 
the symmetric higher Toda flow which is known to be complete. Thus, one can view the 
map defined by (3.1) and (3.3) as a regularization map: the flow (3.3) with initial data Lo 
which a priori can have finite time blowups is mapped into the complete symmetric flow 
with initial data CO = I. Blowups in (3.3) then correspond to the moments of time 
when L(t) leaves the image of 4. Note also that since #l in (3.1) and (3.2) is upper triangular, 
4 maps tridiagonal flows into tridiagonal. 

We now want to modify the definition of j+l by letting the diagonal matrix T depend on L 
and then see how the resulting map r$ behaves with respect to Poisson structures on E + b_ 
and S(J) defined by (2.2). 

First, notice that if T depends on L, then a calculation similar to the one in the proof of 
Theorem3.1 shows thatAdBu +fi/?-’ - ifr(C) E so(J), where fr(C) = Adgc(T-‘f) 
commutes with C. Then 

t = [nJ(,Ck - ;fr(c)), L]. 

Next, we prove the following: 

(3.7) 

Lemma 3.2. Let fl, f2 be restrictions to S(J) of two AdB,-invariant functions. Then 

{fit f2)S(J) o &’ = if1 0 49 f2 0 bh-+c- (3.8) 
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Pro08 Since fi, i = 1,2 are Ads, -invariant, we have 

S(fi 0 4) = (Vfi(O, Ad& - [C, VP-‘I) = (Vfi(Lc>, Adg=). 

Therefore, Vfi o 4(L) = Adg’Vf,(L). 
Moreover, analogous to (2.5), we have 

Ifl, fi)SC/,(0 = vc, [V”fl0% Vf2(01). 

Thus, 

M 0 9 1 .f2 0 NIL+< = W, [Adg’Yf, (0, Ad$Vi(O1) 
= Ifl? f2JS(J)C?w)). 0 

Let us consider a particular choice of L-dependent T in (3.1): 

T=diag(p;t,...,p;‘).T, (3.9) 

where the functions pt = pt (L), . . . , pn = ,on (L) are defined as coefficients in the 
decomposition 

((h - L)-‘)11 = 2 &. 

j=l J 

(3.10) 

In the tridiagonal case pt , . . . , pn are the so-called Moser coordinates [29]. Their im- 
portance is based on the fact that the data (ht , . . . , A,; ~1, . . . , pn } determine a tridiagonal 
matrix L uniquely, and moreover, 

Aj, j.Lj = log 
( 

Pi &#i (Ai - &j) 

> Pnnj#n(L -kj.j> ’ 
i=l,...,n-1, (3.11) 

provide action-angle variables for the Toda lattice. 
In the general case, hi, i = 1, . . . , n - 1, do not form a maximal family of involutive 

integrals, but it is still true (cf. [13]) that (3.11) is a set of canonically conjugate functions 
both on S(J) and E + b_. Note also that, considered as functions on sl(n), pi are invariant 
under the adjoint action of SL(n - 1) imbedded into SL(n) as a right lower block. 

If L evolves according to t = [(Lk)_ , L] then it is known that 

Pj(L) = -(A: - (Lk>ll)Pj(L). 

It follows that nJ(f~(Lc)) = nJ(Adfic(T-‘p)) = nJ(@), and therefore, 

t = [;nJ(P>), .c]. 

Lemma 3.3. If T is given by (3.9), then 

(3.12) 
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ProoJ: Since C = nv(A) and L = AdcA, (3.6) implies 

pj(L) = Clj(C-‘)jl = (C-‘)jl. (3.13) 

But this means that the first column of TJC-’ has all entries equal to 1, and therefore, 
coincides with the transpose of the first row of C. Then, by (3.1), all off-diagonal entries of 
the first column of /I*J#l are zero and thus the only nonzero entry of the first row of /3 is 
(1, 1) entry and the statement follows. 0 

We call a matrix M generic if all its k x k left lower minors (k = 1, . . . , [n/2]) are 
nonzero (cf. [13,17]). We have the following theorem (we remark that in the tridiagonal 
case this result reduces to the usual conjugation by diagonal matrices of the Kostant flow 
to the signed symmetric matrices, which is known to be symplectic): 

Theorem 3.4. Let T be defined by (3.9) and assume that for generic LO E E + b-, the 
factorization (3.1) is well-dejined. Then in the neighborhood of Lo, the map q!~ : E + b_ + 
S(J) is Poisson. 

Proofi To prove the statement, it is sufficient to check the identity (3.8) for a fixed given 
system of coordinate functions on S(J). The system we are going to choose can be defined 
in the same way both for S(J) and E + b_. It will consist of functions (3.11) and restrictions 
of Ads+-invariant functions. This will enable us to use Lemmas 3.2 and 3.3 to finish the 
proof. In fact Lemma 3.3 shows that the partial sets of action-angle variables (3.11) are the 
same for L and f,. The same is clearly true for the Ads+-invariant functions. Below we 
show that these two sets of coordinates provide a complete set of coordinates. 

For any generic M, there exists an upper-triangular matrix r = P(M) such that 

[n/21-1 [n/21-1 

AdrM = c en-k,k + c Xje,_j,n_j + u, 

k=O j=O 

(3.14) 

where U is a strictly upper triangular matrix (see, e.g. [I]). 
Recall that symplectic leaves for (2.2) are orbits of the coadjoint action of B+ and that 

the dimension of the orbit through a generic element is equal to n(n + 1)/2 - [(n + 1)/2]. If 
M = L E E + b- , the functions Xj = xj (L) are coadjoint invariants of B+ . The stabilizer Go 
of Adr L under this action of B+ consists of diagonal matrices D, satisfying djj = dn-j,n_j . 

Let U = (uij, i < j). Then the monomials 

Yi = Q-i+13 i = l,...,[n/2], (3.15) 

Yij = uijuj,n-i-i-13 i<j<n-ifl, (3.16) 

Yij = UijUn-j+l,n-i+lt i < j, (3.17) 

Yijk = uijukiuj,n-k+l* i < j, k < min(i, n - j + l), (3.18) 

are invariant under the adjoint action of the stabilizer Go. This means that we can view 
Yi, Yij , Yij, )‘ijk aS restrictions t0 E + b_ of Ads+-invariant functions on sl(n). 
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In particular, we can choose among these functions n(n - 1)/2 - [(n + 1)/2] + 1 
independentones,e.g. yijr, 1 < i -c j -c n; ylj, j = 2, . . . . n-l; yij, j = 2, . . ., [n/2]. 

For an orbit through LO, which is determined by the fixed values of Xj, j = 0, . . . , [n/2], 
we choose now the system of coordinate functions 

Pj3 hj, j=l,...,n--1, 

zk = zk(u), k = 2n + 1, . . . , n(n + I)/2 - [(n + 1)/21, 
(3.19) 

where zk are independent functions of yi, Yij, yij, Yijk, such that they do not depend on 
Ulj, j = 2,..., n. Then off-diagonal elements of the first column &k(L) are all zero, and 
since pj are SL(n - 1)-invariant functions, we have 

{Zk, Pj}c+h_(L) = (L, [n+VZk(L), n+Vpj(L)l) 

= (L, [n+VPj(L), n-VZk(L)l) 

= (L, [V/Aj(L), n-Vzk(L)]) = 0. (3.20) 

Note now that coordinates (3.19) can be defined on S(J) in absolutely the same way. 
Furthermore, due to Lemma 3.3 and Ada+-invariance of Aj and Zk, we have 

Then the statement of the theorem follows from Lemma 3.2 and the fact that hj, pj, j = 
1 ,‘.., n - 1, are canonically conjugate. 0 

3.2. Noncommutative integrability 

The next question we would like to address is the interplay between the Hamiltonian and 
gradient behavior of Toda flows. As explained above and in [5], in the tridiagonal symmetric 
case, we have a gradient flow on the level set of the integrals, which is diffeomorphic to 
W-’ . However, as was shown in [ 131, level sets of the maximal Poisson commuting family 
containing higher Hamiltonians for full symmetric Toda flows in sl(n) are, in general, 
cylinders. In principle, this allows quasiperiodic behavior of the higher Toda flows. This 
possibility, though, is ruled out by the well-known asymptotic properties of the flows, 
which do not change with a transition from the tridiagonal to full case and which are the 
main reasons one might look for a gradient structure in the full symmetric or Kostant Toda 
flows. 

The key to the explanation of this phenomenon from the Hamiltonian point of view is 
that there are many distinct maximal Poisson commutative families for the full Toda flows 
(this was first observed in [ 171 for the sl(4) case) and that one has to consider the level set of 
all the integrals. This level set is preserved under all higher Toda flows and diffeomorphic 
to Rn-’ due to the noncommutative integrability of the Toda flow on a generic coadjoint 
orbit. 

Indeed, in the proof of Theorem 3.4 we constructed the family (3.15)-(3.18) of Ada+- 
invariant functions whose restriction to the generic coadjoint orbit in E + b_ provides a 
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(Poisson-noncommutative) family of independent integrals for the Toda flow. The number 
of integrals in this family is equal to the dimension of the orbit minus the rank of sl(n). 
Furthermore, the invariant polynomials of L can, from (3.14), be expressed via the integrals 
(3.15)-(3.18) and are in involution with any of them. This puts us into the framework of 
Nehoroshev’s theorem: 

Theorem 3.5 (Nehoroshev [30]). If a Hamiltonian system on a 2n-dimensional symplectic 
manifold possesses 2n - k independent first integrals F1, . . . , Fzn_k such that F1, . . . , Fk 
are in involution with all Fi , i = 1, . . . ,2n - k, then all trajectories lie on k-dimensional 
invariant tori or cylinders. 

The same phenomenon can be observed for the Toda flow on generic coadjoint orbits 
in an arbitrary semisimple Lie algebra g. Indeed, it follows from unpublished results by 
Kostant on the structure of generic coadjoint orbits, that any generic element in E + b- can 
be brought to a normal form analogous to (3.14). Namely, let n = (#?I, . . . , Br} be the 
maximal set of of strongly orthogonal positive roots, i.e. maximal subset of positive roots, 
such that for any two roots in it neither their sum nor their difference is a root. A description 
of n via Kostant’s “cascade construction” can be found, e.g. in [28]. 

Let 0~ be a generic coadjoint orbit 0~ through L E E + II__. Then the following result 
is true. 

Theorem 3.6 (Kostant, unpublished note - see [22]). Let Qo be an orthogonal complement 
in 6 to Span{ [e-b, eg], /I E n}. If L E E + b- is generic, then there exists a unique element 
ho E Q. such that 

Lo = xe_g, +ho+e E 0~. 
i=l 

(3.21) 

The codimension of 0~ in E + b_ is equal to the dimension of the stabilizer of Lo and is 
1 -r. 

Theorem 3.6 allows us to establish noncommutative integrability of the Toda flows on 
generic coadjoint orbits, which, in turn, makes Nehoroshev’s theorem applicable in this 
case. 

Theorem 3.7. The Poisson subalgebra offrst integrals of the TodaJlow on 0~ is gener- 
ated by restrictions to 0~ of AdB+-invariantfunctions on g and hasfunctional dimension 
dim 0~ - 1. Its center is generated by restrictions of the Chevalley invariants of g. 

We give a sketch of the proof of Theorem 3.7. Details can be found in the forthcoming 
paper by Gekhtman and Shapiro [22]. 

Proof By Theorem 3.6, for any generic L E E + b_ there exists bL E B+ such that 
Ad&L = LO = cfzl e-pi + ho + E, where ho E 60. Denote 61 = 6; and consider 
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the factorization T = TuTt of the maximal torus T corresponding to the linear space 
decomposition lo = 60 + qt. Then the stabilizer of LO under the coadjoint action is To and 
bL is defined uniquely up to a right multiplication by elements of To. Let bL = 6~t~ be a 
factorization of bL into the product of unipotent LL and tL E T. We can make the choice of 
bL unique by demanding that t,-_ belongs to Tt . 

For a generic element g E g there exists a unique element L E E + II_ such that 
Jr& (g - L) = 0. Define now b, to be equal to bL as defined above. Note that if /I is an 
element from B+ and j3 = b tot1 is its factorization into the product of unipotent b, to E To 
and tl E Tt, then 

bAdgg = (B”tot,&t;‘t;1) tltL = Bb,t$. 

For any positive root U, define a function 

(3.22) 

P&) = (g, AdbEe-,). (3.23) 

It can be shown that functions va are independent of 0~. 
It follows from (3.22) that p&g) is semiinvariant under the adjoint action of B+: 

eW,d = k, Adb,Ad~‘e-,) = xaW v,(g). 

Moreover, if k is an integral vector such that u = CaEQ+ &(Y, k, E Z, annihilates $0 
then a function 

Ok(g) = l-kJ+ (G%Y(g)P 

is Ads+-invariant on g. 

(3.24) 

The number of linearly independent vectors k such that u annihilates 60 is equal to 
the number of positive roots minus the rank of the matrix (a!(si)&~+, where vi, i = 
1 .., dim 60, is a basis of ho. Clearly, this rank is equal to dim 60 = 1 - r. Thus the 
number of independent functions on OL, Bk, is equal to dim 0~ - 1. On the other hand if 
H is an invariant polynomial on g. then H(L) = H(AdiLIL) can be expressed in terms of 

the functions Bk and is in involution with any of them. 0 

To conclude this section, we compare the behavior of the full Kostant Toda flows with 
that of more general Toda flows defined on the whole space of n x n matrices, namely, 
the QR-flows that were extensively studied and shown to be completely integrable by 
Deift et al. [ 141. The evolution in this case is given by the Lax equation 

ni = [M, M_ - MT], (3.25) 

where M- is a strictly lower triangular part of M. Note that we have applied a transposition 
to the equation originally considered in [ 141. 

It is known that if the initial data M(0) belong to the open set of elements with distinct 
real eigenvalues in the space of real II x n matrices, then as t tends to 00, M(t) tends to an 
upper triangular matrix with diagonal entries arranged in ascending order. This (a) indicates a 
gradient-like behavior and (b) suggests that as in the case of full Kostant Toda flows, invariant 
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manifolds have dimension (n - 1) which is much smaller than half the dimension of a generic 
symplectic leaf, equal in this case to n (n - 1). Recall that the maximal Poisson commuting 
family constructed in [14] contains two subfamilies of integrals: one coincides with the 
maximal family of B-invariant Poisson commuting integrals for the generic symmetric or 
Kostant Toda lattice and the other consists of functions invariant under the conjugation by 
elements of the orthogonal group. Elements of the latter subfamily generate periodic flows. 

Our first remark here is that, as in Eqs. (3.1) and (3.2), the flows of (3.25) can be conjugated 
to, generally speaking, linear combinations of higher symmetric Toda flows. We shall not 
discuss here how to make a conjugation map Poisson, but limit ourselves to establishing 
noncommutative integrability of (3.25). 

Theorem 3.8. The Poisson subalgebra ofjirst integrals of the TodaJEow (3.25) on generic 
symplectic leaves has functional dimension (n - l)*. Its center is generated by the Chevallq 
invariants ofTr(M*), . . . , Tr(Mn). 

Proo$ We refer to Deift et al. [14] for the fact that if a function fl (resp. A) is invariant 
under the conjugation by elements of the upper triangular (resp. orthogonal) group, then fl 
and f2 are in involution and both ft and A are in involution with any Chevalley invariant. 

Let Vll (resp. a*) denote the subalgebra of functions on gl(n) invariant under the con- 
jugation by elements of the upper triangular (resp. orthogonal) group. We refer to Deift 
et al. [14] for the fact that if fl E X1 and A E a*, then fl and f2 are in involution and 
both ft and f2 are in involution with any Chevalley invariant. Note also that the family of 
independent Casimir functions that defines generic symplectic leaves belongs to % 1 + 5%. 

Thus, it is sufficient to show that the functional dimension of the subalgebra of functions 
on gl(n) generated by Vtt, 2l2 is n* - n. By Theorem 3.7, 31 is generated by n(n - 1)/2 
integrals and Casimirs. On the other hand, 5%~ is generated by matrix elements of the upper 
triangular factor U in the Schur decomposition A4 = 0 U Or, so its functional dimension 
is n (n + 1)/2. Since 9ll fl VI2 is generated by the Casimir function Tr(M) and the Chevalley 
invariants Tr(M*) , , . . , Tr(Mn), the statement follows. 0 

4. Conclusions 

In this paper we have proved a number of properties describing the qualitative behavior 
of a fairly general class of Toda flows. We conclude by mentioning some related issues. 

While the symmetric flows are known to have long time existence, it is known that this 
is not true in general in the nonsymmetric case (either tridiagonal or full). Kodama and Ye 
1241, Brockett and Faybusovich [lo], and Faybusovich [18] for example showed that the 
signed Toda flows may experience a blow up in a finite time. On the other hand, Gekhtman 
and Shapiro [21] found necessary and sufficient conditions for completeness of the Kostant 
Toda flows. Similar conditions may be found for other flows discussed here. For example 
the result of Gekhtman and Shapiro may be extended in order to find a criterion for solution 
of signed Toda lattice to be everywhere nonsingular as follows: 
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Let the signature matrix S be equal to diag(rr , . . . ,E~),E~ = fl.LetLin(2.12)betridi- 
agonal and set D = diag(dt, . . . , &) = diag(1, ~2at, ~2~3~1~2, . . . , ~1 . . . G,UO.. . a,). 
Then L = D-l LSD has entries one on its subdiagonal and the (i, i + 1) entry of L is 

2 EiEi+lui. 

L&Al > **. > A.,, s 5 n, be distinct eigenvalues of L(O)S and C(L(0)) be the matrix 
whose columns constitute a Jordan basis of the upper triangular Jordan normal form of 
L(O)S. Then columns of C = D-‘C(L(0)) form a Jordan basis for i(O). 

Let pi = sign(di (0)). Denote by C~,:::;;~k_l. a minor of C(L(0)) formed from the k first 
columns and the ith, . . . , (i + k - 1)th rows. Then one can show that flow (2.12) is complete 
if and only if 
(1) all hi (i = 0, . . . , s) are real, 
(2) for any k = 1, . . . , n - 1, all numbers pi . . . pi+~_-~C!:::‘$~_, ( i = 1, . . . , n - k) are 1 3 

nonzero and have the same sign. 
The geometry of convex polytopes has been very useful for understanding the qualita- 

tive behavior of the Toda flows. Van Moerbeke [37] and Deift et al. [15] observed that 
an isospectral manifold of Jacobi (symmetric, tridiagonal) matrices with nonnegative off- 
diagonal elements, i.e. a Toda orbit, is homeomorphic to a convex polytope. In [6], it is 
shown, by studying the Kahler geometry of the Toda flows, that this polytope is in fact the 
image of a momentum map. The usual tridiagonal flow thus remains in such a polytope. 

Polytopes are also useful in considering the tridiagonal flows where the off-diagonal 
elements are not taken to be positive. Tomei [36] considered the manifold formed when 
one allows the off-diagonal elements of the Jacobi matrices to change sign, but nonetheless 
requires the matrix to remain symmetric. In other words, Tomei analyzed the topology of 
the set of real symmetric tridiagonal matrices with fixed eigenvalues. This turns out to be a 
smooth orientable manifold, but one that is closely related to a manifold formed by “glueing” 
polytopes of the type described above together. In fact this manifold (call it Mh,,kZ,,,,,kn) 
turns out to be a “small cover” of a permutohedron P,, in the sense of Davis [ 1 l] and Davis 
and Januszkiewicz [ 121. Kodama and Ye [26] carried out a similar construction, but using a 
glueing rule derived from the indefinite Toda flows. The idea is to glue together isopectral 
sets of Jacobi matrices of fixed signature, and to use the dynamics of flows to give the 
glueing rule. 

It would be interesting to pursue the role of convexity in understanding the Kostant and 
full Toda flows -we intend to pursue this idea in a future publication. 

In conclusion, we note that we have given here a rather general description of the various 
kinds of finite Toda flow, symmetric and nonsymmetric, tridiagonal and full, indicated how 
to pass from one to another, and described their qualitative nature, including the relationship 
of their gradient to their Hamiltonian properties. 
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